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Children's early knowledge of the base-10 structure of multi-digit numbers has been hypothesized to play a crit-
ical role in subsequent learning ofmathematics, in particular arithmetic operations. The present study investigat-
ed the relation between base-10/place value understanding and arithmetic accuracy in early elementary school.
Children were assessed in kindergarten (N = 90) and then a subgroup of participants was assessed again two
years later in second grade (N = 21). Mediation analyses indicated that, in kindergarten, base-10 knowledge
had a direct effect on arithmetic accuracy aswell as an indirect effect through the use of a decomposition strategy.
Furthermore, kindergarten base-10 knowledge had a direct effect on arithmetic accuracy in second grade and an
indirect effect through second grade place-value notation understanding. Implications for understanding early
mathematical development are discussed.
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An understanding of the base-10 system is posited to be a critical as-
pect of early mathematics knowledge (Geary, 2006; Miura, 1987;
NCTM, 2000; National Research Council, 2001). More specifically, it is
widely believed that base-10 knowledge is necessary for accurate com-
putation of multi-digit arithmetic problems (Fuson, 1990; Fuson &
Briars, 1990; National Research Council, 2001). Errors in carrying and
borrowing in written addition problems, for instance, have been attrib-
uted to a lack of understanding of base-10 and place value (Brown &
Burton, 1978; Fuson, 1990; Hiebert, 1997; Ross, 1986; Varelas &
Becker, 1997). Further, base-10 knowledge is related to the use of de-
composition strategies, which are most efficient for solving problems
with sums above 10 (Laski, Ermakova, & Vasilyeva, 2014). To date, how-
ever, discussion of the relation between base-10 understanding and ar-
ithmetic problem solving has been primarily theoretical (e.g., Fuson &
Briars, 1990; Geary, Hoard, Nugent, & Bailey, 2013). In the present
study, mediation analyses were used to simultaneously examine the re-
lations among kindergartners' base-10 knowledge, addition strategies,
and addition accuracy and to test whether kindergartners' early base-
10 knowledge predicts accuracy onmore complexmulti-digit problems
in second grade.
hool of Education, Department
Boston College, Chestnut Hill,

iffman@bc.edu (J. Schiffman),
asilyeva).
1. Base-10 and place-value notation

It takes several years for children to develop an understanding of the
base-10 system and place-value notation (Carpenter, Franke, Jacobs,
Fennema, & Empson, 1998; Fuson, 1986, 1988, 1992; Fuson & Briars,
1990; Ginsburg, 1989; Varelas & Becker, 1997). Before formal schooling,
most children think of numbers larger than ten as collections of units
rather than as groups of tens and units (Mix, Prather, Smith, &
Stockton, 2014). Children's understanding of the base-10 numeric
structure is typically assessed with a block-task (e.g., Miura, Okamoto,
Kim, Steere, & Fayol, 1993) in which children are asked to “show”
two-digit numbers using blocks that include small cubes representing
single units and bars that represent ten units combined together. If chil-
dren think of numbers as collections of single units, they will show a
number, such as 32, using 32 individual unit cubes. If, however, children
understand the base-10 structure of numbers, they are more likely to
show a number, such as 32, using three ten-bars and two individual
units. Between kindergarten and second grade, children increasingly
use both tens- and single units to represent two-digit numbers
(Miura, 1987; Miura et al., 1993; Saxton & Towse, 1998).

Thinking of multi-digit numbers as groups of tens and units should
translate into later place-value notation knowledge because it lays the
foundation for understanding that the numericmagnitudes represented
by each digit vary based on the digit's position in a number. Suggestive
of this relation, one of the most common misconceptions about place-
value notation—concatenation—reflects a lack of understanding of the
base-10 structure of multi-digit numbers. A child who makes a concat-
enation error focuses on the face-value of digits as opposed to a digit's
value as a multiple of ten based on its location within a multi-digit
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number (Cobb & Wheatley, 1988; Fuson & Briars, 1990; Miura et al.,
1993; Price, 1997; Ross, 1989; Varelas & Becker, 1997). For example,
when asked to describe how the numeral 24 relates to 24 sticks, chil-
dren making face value errors may state that the 2 in 24 represents 2
sticks and the 4 represents 4 sticks, rather than 20 and 4 (Price, 1997;
Ross, 1989). Children's understanding of place-value notation and its
application to arithmetic increases during elementary school. In a
cross-sectional study, Varelas and Becker (1997) found that the per-
centage of children who traded correctly and gave the correct digit for
the 10s place on a written arithmetic task increased from 56% to 77%
to 98% between second and fourth grades. In the present study, the re-
lation between early base-10 knowledge and later place-value notation
understanding was examined empirically using a longitudinal design.

2. Base-10, addition strategies, and accuracy

To be successful onmore complex problem solving inmath, children
must first learn to accurately and efficiently solve simple arithmetic
problems in early elementary school (Cowan et al., 2011; Jordan,
Kaplan, Olah, & Locuniak, 2006). Children can arrive at solutions to ad-
dition problems through various types of strategies. When asked to
solve problems without paper and pencil, children typically use one of
three types of addition strategies: counting, decomposition, and retriev-
al (Geary, Bow-Thomas, Liu, & Siegler, 1996a, 1996b; Geary, Fan, &
Bow-Thomas, 1992; Shrager & Siegler, 1998). Counting strategies in-
volve enumerating both of the addends or counting-up from one of
the addends. The retrieval strategy involves recalling the solution to a
problem as a number-fact stored inmemory, rather than active compu-
tation. Decomposition involves transforming the original problem into
two or more simpler problems, and often begins with solving for ten
first (e.g., base-10 decomposition: solving 6 + 5 by adding 6 and 4 to
get to 10, and then 1 more).

A decomposition strategy is useful for solving arithmetic problems,
particularly when the problems involve sums above ten and/or
double-digit addends (Ashcraft & Stazyk, 1981; Torbeyns, Verschaffel,
& Ghesquiere, 2004). Children and adults who frequently use decompo-
sition to solve arithmetic problems tend to have higher math perfor-
mance and overall math achievement scores than those who depend
on counting strategies (Carr & Alexeev, 2011; Carr, Steiner, Kyser, &
Biddlecomb, 2008; Geary, Hoard, Byrd-Craven, & DeSoto, 2004;
Fennema, Carpenter, Jacobs, Franke, & Levi, 1998). A recent study
found that the frequency with which first graders' use a decomposition
strategy predicted their accuracy on complex addition problems and
mediated cross-national differences in accuracy on these complex arith-
metic problems (Vasilyeva, Laski, & Shen, 2015).

Kindergartners who use decomposition tend to have a better under-
standing of the base-10 structure of the number system than those who
do not (Laski et al., 2014). This relation makes sense theoretically. Con-
sider, for example, addition problemswith single-digit addends that re-
quire carryover into the tens place (e.g., 7 + 5). Having a base-10
Table 1
Coding scheme for addition strategies.

Category Definition Behavioral/ve

Counting Enumerating each unit in one or both of the addends Child verbally
during proble
the solution.

Decomposition Transforming the original problem into simpler
problems, using base-10 properties or previously
memorized number facts

Child reported
smaller numb
child's explan

Retrievala Recalling a required number fact from memory Child reported
decompositio

Other None of the above Child reported
and could not

a Retrieval is only used on single-digit problems.
understanding of two-digit numbers (e.g., 12 = 10 + 2) may facilitate
the use of decomposition in solving this problem: 7 + 5 =
(7+ 3) + 2= 12. Similarly, better understanding of base-10 structure
may facilitate use of decomposition strategy in solving problems with
multi-digit addends, with or without carryover (e.g., 23 + 14). In
order to use a decomposition strategy that involves adding tens, then
ones, then combining the results, a childmust knowwhich digits repre-
sent the tens and be able to increment by tens rather than ones. There-
fore, it is not surprising that understanding of base-10 structure predicts
the use of decomposition. Identifying base-10 knowledge as a predictor
of decomposition strategy use by children is noteworthy because this
strategy has been shown to lead to higher arithmetic accuracy
(e.g., Geary et al., 2004). Importantly, however, the relation among
base-10 knowledge, use of decomposition strategy, and arithmetic ac-
curacy has not been investigated in the context of a single study within
the same group of children. Thus, no direct evidence for the theoretical
relation between these three aspects of mathematics knowledge exists.
The present study empirically tested this relation.

3. The present study

Thepresent studyhad two primary goals. Thefirst goalwas to simul-
taneously examine the relations among kindergartners' base-10 knowl-
edge, addition strategies, and addition accuracy. Based on the analysis
above, we expected that the extent to which children represented
double-digit numbers as tens and ones, rather than as a collection of
units, would predict their accuracy on addition problems and that this
relation would be mediated by the frequency with which they used a
decomposition strategy.

The second goal of the study was to examine longitudinally the rela-
tion between early base-10 knowledge and later mathematics perfor-
mance. A subgroup of kindergartners was followed to second grade
and asked to answer place value notation questions as well a set of
more complex arithmetic problems. We expected that kindergartners'
base-10 knowledge would predict their understanding of place-value
notation two years later. Further, we expected that early base-10
knowledge would influence later arithmetic accuracy through place-
value notation understanding because place-value notation under-
standing is essential for solving complex arithmetic problems that in-
volve multi-digit addends and carrying and borrowing.

4. Method

4.1. Participants

Thepresent study included a group of kindergartners (N=90;Mean
age= 6;1 years, SD=0.34). In addition to testing the full sample in kin-
dergarten, we were able to test a subset of the sample two years later
when children were in second grade (N = 21; Mean age = 8;3 years,
SD = 0.42). Analyses indicated no differences on kindergarten
rbal cues Example

counted by one or exhibited counting through behavioral cues
m solving or reported enumerating addend(s) when describing

6 + 5… “7, 8, 9,
10, 11”
“I counted 5
from 6.”

several steps involving breaking the original addends into
ers. This could be observed during problem solving or during the
ation.

6 + 5… “6 + 4
= 10, 10 + 1 =

11”
the answer within 3 s with no overt evidence of counting or

n stated that he/she “just knows the answer”
6 + 5… 11, “I
just know it.”

guessing or not knowing, or reported a strategy that was unclear
be clarified by further prompting

“I don't know.”



Table 2
Percent correct at Time 1 and Time 2.

Time 1 Time 2

Single-digit Multi-digit Overall Place value Arithmetic

Full sample n = 90 69% (28%) 55% (35%) 63% (29%)
T2 sample n = 21 69% (30%) 57% (34%) 64% (30%) 65% (30%) 63% (22%)
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measures of math knowledge between those children followed to
second grade and others from the full kindergarten sample, all p-
values N 0.05. Children were recruited from private and public schools
serving middle- to higher-income families.

4.2. Measures of Base-10 and Place Value.

4.2.1. Time 1
In the base-10 block-task (Miura, 1987), an experimenter presented

kindergartners with unit-blocks and 10-blocks and explained that the
blocks could be used to show numbers. After two practice trials, each
child was given five test trials. On each test trial, the experimenter pre-
sented a child with a different number card and asked the child to show
the number using blocks. For each trial, the experimenter codedwheth-
er the child used a canonical base-10 presentation, which involved
using the largest possible number of 10-blocks to represent 10s and
unit-blocks to represent ones (e.g. showing 23 with two 10-blocks
and three unit-blocks), or used other strategies (e.g., only a collection
of units) to represent the given number.

4.2.2. Time 2
Second graders completedfive place-value notation problems. Three

problems required children to determine the largest or smallest number
among a group of numbers presented either as Arabic numerals
(e.g., 10,101) or as groups of tens and ones (e.g., 3 tens and 28 ones).
One problem required children to identify the tens place in multi-digit
numbers. An additional problem required children to generate the larg-
est possible number using a set of given digits. Children'smean accuracy
on the five problems was calculated.

4.3. Measures of arithmetic accuracy

4.3.1. Time 1
Kindergartners were presented with 24 addition problems, one at a

time. Half of them were single-digit problems (5 + 6=) and the other
half were multi-digit problems (e.g., 15 + 8=). The experimenter
read each problem aloud and then gave children as much time as need-
ed to solve the problem. Children were not provided with any supplies,
such as paper or pencil, but were permitted to use their fingers or to
count aloud. Children's accuracy for each problem was coded as 1 or 0
and averaged across all 24 items.

4.3.2. Time 2
Second graders completed 10 double- and mixed-digit addition and

subtraction problems. Half of these were contextualized within a story
(e.g., “A grocery store had 89 bananas. They sold 27 bananas onMonday
and 34 bananas on Tuesday. Howmany bananaswere left in the grocery
store on Wednesday?”). The other half were decontextualized; children
Table 3
Percent of trials on which strategies were used.

Task 1

Base-10 canonical representation

Full sample n = 90 48% (42%)
T2 sample n = 21 63% (44%)
were presented with double-digit addition, subtraction, and missing
term problems (e.g., 42–29=) using only numerical symbols. All prob-
lems were presented in one of two randomized orders. Children could
solve the problems eithermentally or with the paper and pencil provid-
ed. Children's accuracy was calculated across these two problem types.

4.4. Measure of strategies

Kindergartners' approach to solving the problems was coded using
experimenters' notes of overt behavior and children's retrospective re-
ports of strategy use. Strategies were coded as counting, decomposition,
retrieval, or “other.” A more complete description of the strategies can
be found in Table 1. The “retrieval” code was used only on single-digit
problems because it has been generally accepted that retrieval only ap-
plies to stored number facts involving single-digit numbers (e.g., Geary
et al., 2004). In situationswhen children usedmore than one strategy in
executing decomposition theywere coded as only using decomposition.
For example, the decomposition code was used if a child retrieved the
answer to a simpler problem and then used count on to reach his final
answer (e.g., to solve 5 + 7, a child might recall that 5 + 5 = 10 and
then count on 11, 12). Raters discussed all situations inwhich children's
reported strategy conflictedwith their observed behavior and the raters
together agreed on the final strategy code.

5. Results

While the primary analyses involved examining the relation be-
tween base-10 knowledge, strategy use, place value and arithmetic ac-
curacy, we began by examining descriptive statistics on all the
measures in kindergarten and second grade. Table 2 presents kindergar-
teners and second-graders' accuracy on the tasks administered at Time
1 and Time 2. In terms of base-10 knowledge in kindergarten, children
used a canonical base-10 representation on 48% (SD = 42%) of trials.
The subgroup of childrenwhowere followed to second grade answered
65% (SD=30%) of the place-value notation problems correctly. In terms
of arithmetic accuracy, children accurately solved more than half of the
arithmetic problems correctly at both grade levels: 63% (SD = 29%) in
kindergarten and 63% (SD=22%) in second grade. In terms of addition
strategy choice in kindergarten, children's predominant strategy was
counting, which was used on 65% (SD= 31%) of problems. Kindergart-
ners did, however, use retrieval and decomposition to solve some prob-
lems: 15% (SD = 19%) and 10% (SD = 18%) of problems, respectively.
Table 3 presents the percentage of problems of which children used
each type of strategy at Time 1. Thus, in general, children demonstrated
moderate performance on all measures – they were neither at floor nor
ceiling on anymeasure – and there was sufficient variability across chil-
dren, allowing us to test for predictors of individual differences in strat-
egy choice and arithmetic accuracy.
Task 2

Retrieval Decomposition Counting

15% (19%) 10% (18%) 65% (31%)
14% (15%) 8% (17%) 70% (30%)
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Fig. 1. Concurrent relations: direct and indirect effects of base-10 knowledge on arithmetic accuracy among kindergartners. Note. *p b 0.05, **p b 0.01, ***p b 0.001.
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Standard deviations are presented in parentheses.
To examine the relations among base-10 knowledge, use of decom-

position, and arithmetic accuracy in kindergarten, we conducted a
bias-corrected bootstrapping mediation analysis (Dearing & Hamilton,
2006) using the SPSS macro “PROCESS” (Preacher & Hayes, 2008). This
analysis allowed us to simultaneously examine direct effects as well as
whether the influence of base-10 knowledge on multi-digit arithmetic
accuracy occurred through the use of decomposition. Because it was
possible that children's performance on all three measures was indica-
tive of their general math ability, we added a covariate—a measure of
children's fluency on simple addition problems—to reduce the possibil-
ity of this confound. Fluency was calculated as the percentage of single-
digit problems on which retrieval was used correctly; the mean fluency
score at Time 1 was 20% (SD= 24%).

As shown in Fig. 1, base-10 canonical representation was related to
both multi-digit arithmetic accuracy, c = 0.38, sc = 0.08, p b 0.001,
and use of a decomposition strategy, a = 0.18, sa = 0.05, p b 0.001.
The association between base-10 canonical representation and multi-
digit arithmetic accuracy was weaker, however, when both base-10 ca-
nonical representation and use of decompositionwere included in a sin-
gle model predictingmulti-digit arithmetic accuracy: base-10 canonical
representation, c′= 0.31, sb = 0.08, p b 0.001, and decomposition, b=
0.41, sb = 0.19, p = 0.04 The product of the coefficients (ab) for the
T1 Base-10 
Canonical 

Representation c = .35 (

T1 Base-10 
Canonical 

Representation c’ = .18 

a = .22 (.10)*

T2 Place 
Accura

Fig. 2. Longitudinal relations: direct and indirect effects of base-10 knowledge on arithmet
indirect path from base-10 knowledge to arithmetic accuracy by way
of frequency of using a decomposition strategy was significant (point
estimate = 0.07, 95% bias-corrected confidence interval = [0.02 to
0.15]).

Next we examined whether individual differences in base-10
knowledge in kindergarten had a long-term effect on children's arith-
metic accuracy, and whether there was an indirect effect through
place-value notation understanding.We ran anothermediation analysis
using the bootstrapping method with bias-corrected confidence esti-
mates. Again, to reduce the possibility that general math ability ex-
plained any associations, we used kindergarten fluency as a covariate
on the outcome (second grade arithmetic accuracy); the Time 1 mean
fluency for the restricted sample was 18% (SD= 19).

As shown in Fig. 2, kindergarten base-10 canonical representation
was associated with both second-grade arithmetic accuracy, c = 0.35,
sc = 0.14, p= 0.02, and second graders' place-value notation accuracy,
a = 0.22, sa = 0.10, p = 0.04. When kindergarten base-10 canonical
representation and second-grade place value accuracy were include in
a single model, second-grade arithmetic accuracy was associated with
second-grade place value, b = 0.92, sb = 0.23, p = 0.001, but the rela-
tion between kindergarten base-10 canonical representation and
second-grade addition accuracy, became insignificant, c′ = 0.18, sb =
0.11, p = 0.14. The product of the coefficients (ab) for the indirect
T2 Arithmetic 
Accuracy 

.14)*

T2 Arithmetic 
Accuracy 

(.11)

b = .92 (.23)**

Value 
cy

ic accuracy from kindergarten to second-grade. Note. *p b 0.05, **p b 0.01, ***p b 0.001.
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path from kindergarten base-10 knowledge to second grade arithmetic
accuracy through second grade place-value notation accuracy was sig-
nificant (point estimate = 0.20, 95% bias-corrected confidence inter-
val = [0.04 to 0.52]).
6. Discussion

The present study provides a bridge between two bodies of litera-
ture about early mathematics learning. One set of studies has docu-
mented the relation between the use of decomposition and arithmetic
accuracy (Carr & Alexeev, 2011; Geary et al., 2004; Fennema et al.,
1998; Vasilyeva et al., 2015). Otherwork has established the relation be-
tween children's understanding of the base-10 structure and use of de-
composition strategies (Laski et al., 2014). These separate lines of
research suggested that the use of decompositionmightmediate the re-
lation between base-10 understanding and arithmetic accuracy. That is,
children who have a better understanding of base-10 structure will be
more likely to use decomposition in solving arithmetic problems,
which, in turn, will be associated with higher accuracy on these
problems.

The results of the present study provide support for the theoretical
relation among these three aspects ofmath knowledge. It is noteworthy
that the findings were consistent with the theoretical predictions, sug-
gesting theywere not spurious or due to chance. First, they demonstrate
that individual differences in base-10 knowledge at least partially ex-
plain individual differences in arithmetic accuracy both concurrently
and longitudinally. Further, the mediation analyses provide insight
into the mechanisms by which children's understandings of numeric
structure influences their performance on computation tasks. In kinder-
garten, base-10 knowledge supports execution of a decomposition
strategy, which, in turn, leads to greater addition accuracy on problems
with sums above ten. Over time, initial base-10 knowledge leads to a
better understanding of place-value notation,which is related to greater
accuracy on arithmetic problems involving multi-digit addends. Identi-
fying these paths has implications for understanding the development
of mathematics skill.

Generally, the findings serve as another example of the relation be-
tween conceptual and procedural knowledge in mathematics. Previous
research has shown conceptual knowledge can influence procedural
knowledge or vice versa (for a review, see Rittle-Johnson & Siegler,
1998). To better understand this iterative relation between concepts
and procedures it is important to map out the sequence with which
skills emerge and how they influence each other. In this case, base-10
knowledge was found to be a precursor of a decomposition strategy
and an abstract understanding of place-value notation, both of which
predicted arithmetic accuracy. This suggests that efforts focused on im-
proving children's base-10 knowledge in early childhood could reduce
individual differences in other mathematics outcomes.

Importantly, research indicates that children's knowledge of base-10
is quite malleable. The age at which children accurately use ten-blocks
and unit cubes to represent two-digit numerals seems to depend, in
part, on their instructional experiences (Fuson & Briars, 1990; Fuson,
Smith, & Lo Cicero, 1997; Hiebert & Wearne, 1992; Miura et al., 1993;
Varelas & Becker, 1997). For example, Saxton and Cakir (2006) found
that providing children with practice using count-on or partitioning
sets (e.g., 12 into 5 and 7 or 9 and 3) increased children's knowledge
of base-10. Further, cross-national studies indicate no differences in
East Asian and American children's use of base-10 representations
upon school entry (Vasilyeva, Laski, Ermakova, Lai, Jeong, & Hachigan,
2015), whereas these differences have been documented later, after
children received math instruction (e.g., Miura et al., 1993). Recent
work suggests improvement in the base-10 knowledge of American
first graders in the last 20 years, corresponding with the increased in-
structional emphasis on children's understanding of base-10 structure
(Vasilyeva, Laski, & Ermakova, 2015). The present study suggests that
a focus on base-10 knowledge in early childhood is well-founded and
could have lasting effects on children's arithmetic performance.
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