Name:			
Teachei			

Density Lab: 6th Grade Weather Unit

Safety Rules:

- 1. Carefully follow all instructions given by the teacher.
- 2. Be careful with science tools, equipment, and supplies. Use them according to instructions.
- 3. Conduct yourself in a respectful and responsible manner.
- 4. Report any accidents or spills to the teacher.
- 5. Be sure to return all science supplies to the teacher at the end of the activity.

Materials:

Split tanks Warm Water Cold Water Two different colors of food coloring
Stir stick

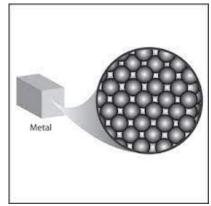
Density Cubes (set of 4)

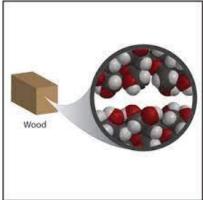
Density Bottles with beads Spill trays Scales (optional) red/blue pens (optional)

Vocabulary:

Mass: amount of matter in an object, usually measured in grams

Volume: the amount of space occupied by an object

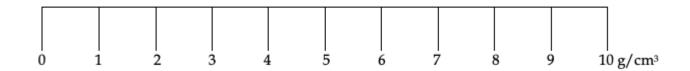

Density: amount of matter packed in a space.


Step 1 Question:

How does density affect weather patterns?

Step 2 Research:

Every object on earth is made of atoms. Gravity pulls these atoms to the earth. You can measure the pull of gravity on an object. We call that measurement weight. A molecule is a group of atoms bonded together. Density is how close together the molecules of a substance are or how much mass a substance has in a given space.


Part 1: Density Cubes

- 1. Feel density cubes and arrange them in order from most to least dense in a column
- 2. Consider this information:

Try to identify each metal by their symbol (letter or number).

	Aluminum	Steel	Brass	Copper
Density	2.7 g/cm3	7.85 g/cm3	8.73 g/cm³	8.96 g/cm³
Symbol				

3. Use math and computation thinking to put each metal on this chart below.

Part 2: Density Tank Demonstration

- 1. Pour warm water into one side of the density tank and cold water into the other side.
- 2. Add food coloring to each side, blue for cold and warm for hot.
- 3. Make cause and effect observations:

Cause	Effect
	Cause

4.	Predict what will happen when the center divider is released.
5.	Release the center divider.
	Observe patterns.
•	Put the center divider back in the tank. Stir one side but not the other side.
0.	Predict what will happen When the center divider is released again.
7.	Hypothesis: Draw a model for what could cause an inversion in Utah (bad air trapped in the valley).
	(was an arappea in ano sanoy).

Part 3: Density Beads

5.

1.	Shake the density	bottle and observe what happens.
----	-------------------	----------------------------------

2	l lct	the Oh	iects in	vour	hottle	from	least t	o most	dense
۷.	LIST	uie Ob	IECT2 III	voui	DULLIE	110111	ıcası ı	.U IIIUSL	uelise

	Claim (color bead)	Reason	Evidence
1 (least)			
2			
3			
4 (most)			

- 3. Consider this information: Isopropyl alcohol is a little less dense than water. Isopropyl alcohol has a density of about .79 g/cc at standard temperature and pressure compared to 1.0 g/cc for water. Salt water has a density of about 1.03 g/cc.
- 4. Which is more dense salt water or alcohol.

Claim	Reason	Evidence

Experiment.	t. Predict, what will happen when ice is added to the bottle?	

nate the density of these items.	
Density	
	and rubbing alcohol is .79 g/ c

6. Watch ice added to bottle