$1 \mathrm{M} \mathrm{CuSO}_{4}$

1000 mL

$1 \mathrm{M} \mathrm{CuSO}_{4}$

How much copper is in here that can react and exchange places with iron?

$0.5 \mathrm{M} \mathrm{CuSO}_{4}$
1000 mL
$64 \mathrm{~g} \quad 32 \mathrm{~g}$
$\mathrm{CuSO}_{4}(\mathrm{aq})$
$160 g^{*} 0.5=80 g$

$0.5 \mathrm{M} \mathrm{CuSO}_{4}$

How much copper is in here that can react and exchange places with iron?

$1.0 \mathrm{M} \mathrm{CuSO}_{4}$

- $160 \mathrm{~g} \mathrm{CuSO}_{4}$ in 1000 mL of water
- 200 ml of 1 M has $32 \mathrm{~g} \mathrm{CuSO}_{4}$
- 100 ml of 1 M has $16 \mathrm{~g} \mathrm{CuSO}_{4}$
$0.5 \mathrm{M} \mathrm{CuSO}_{4}$

- $80 \mathrm{~g} \mathrm{CuSO}_{4}$ in 1000 mL of water
- 200 ml of 0.5 M has $16 \mathrm{~g} \mathrm{CuSO}_{4}$
- 100 ml of 0.5 M has $8 \mathrm{~g} \mathrm{CuSO}_{4}$

2 g Fe

Iron was the limiting reactant because the solution is blue (still copper in solution)

4 g Fe

6 g Fe

CuSO4 was the limiting reactant because the solution is NOT blue but Yellow- Proof that all the copper was taken out of the solution and now is a solid.

Solution

What is the difference between Fe^{+2} and Fe^{+3}

Fe^{2+}

$$
\mathbf{F e}^{3+}
$$

Iron (Fe) loses its two electrons from the valence shell to form $\mathbf{F e}^{3+}$ and hence showing +3
Oxidation state.
The ion formed is called a Ferric ion.

They always show the paramagnetic behavior because of lone pair of electrons

The general electronic configuration: The general electronic
$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$
They are unstable in nature.
configuration: $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$ Due to its half-filled subshell it is more stable, than $\mathbf{F e}{ }^{\mathbf{2 +}}$

Ferrous ion is of green color solution Ferric ions contain yellow and turns to violet color when mixed brown solution $\left(\mathbf{F e C l}_{\mathbf{3}}, \mathbf{6} \mathbf{H}_{\mathbf{2}} \mathrm{O}\right)$ with water. $\left(\mathrm{FeSO}_{4} \cdot \mathbf{7 H}_{2} \mathrm{O}\right)$.

What is the limiting reactant?

3 grams of Iron are mixed in a 200 mL solution of 0.5 M copper sulfate. In 200 ml of CuSO4 solution there is $16 \mathrm{~g} \mathrm{CuSO}_{4}$.

3 gEe	1 molFe	1 mol Cu	$64 \mathrm{~g} \mathrm{Cu}=3.4 \mathrm{~g} \mathrm{Cu}$
	56 gFe	1 molFe	1 moleu

$16 \mathrm{~g} \mathrm{CaSO}_{4}$	$1 \mathrm{moluSO}_{4}$	1 mgen	$64 \mathrm{Cu}=6.4 \mathrm{~g} \mathrm{Cu}$
	$160 \mathrm{Cu}_{\mathrm{CuO}}^{4}$	1 mol CuSO	1 motcu

What is the limiting reactant?

3 grams of Iron are mixed in a 200 mL solution of 0.5 M copper sulfate. In 200 ml of CuSO4 solution there is $16 \mathrm{~g} \mathrm{CuSO}_{4}$.

This is the smallest so
3 grams of Fe limited the production of copper in this reaction

$16 \mathrm{gCn} 8 \mathrm{O}_{4}$	$1 \mathrm{~mol}^{\text {cusO }}$	1 moteu	$64 \mathrm{Cu}=6.4 \mathrm{~g} \mathrm{Cu}$
	$160 \mathrm{CH}_{4} \mathrm{SO}_{4}$	$1 \mathrm{~mol} \mathrm{CuSO}_{4}$	$1 \mathrm{mołCu}$

What is the \% Error of the amount of copper recovered?

Exact amount of copper that was supposed to be recovered $=3.4 \mathrm{~g} \mathrm{Cu}$
Amount of copper recovered in the experiment $=3.6 \mathrm{~g} \mathrm{Cu}$
\% Error $=\frac{\text { Experimental- Actual }}{\text { Actual }}$ * 100 so, $\frac{3.6-3.4}{3.4}$ * $100=5.9 \%$ Error

If 100 mL of $1 \mathrm{M} \mathrm{CuSO}_{4}$ reacts with 2.5 grams of Iron. How much copper can be produced?

Use Equation \#1 AND \#2
$\# 1 \mathrm{Fe}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{FeSO}_{3}(\mathrm{aq})$
$\# 22 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{~s})+3 \mathrm{Cu}(\mathrm{s})$

If 100 mL of $1 \mathrm{M} \mathrm{CuSO}_{4}$ reacts with 2.5 grams of Iron. How much copper can be produced?

How much copper is in here that can react
 and exchange places with iron?

If 100 mL of $1 \mathrm{M} \mathrm{CuSO}_{4}$ reacts with 2.5 grams of Iron. How much copper can be produced?

Equation \#1
$\mathrm{Fe}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{FeSO}_{3}(\mathrm{aq})$

$160 \mathrm{~g} \mathrm{CuSO}_{4}$

$1 \mathrm{M} \mathrm{CuSO}_{4}$

If 100 mL of $1 \mathrm{M} \mathrm{CuSO}_{4}$ reacts with 2.5 grams of Iron. How much copper can be produced?

Equation \#1
$160 \mathrm{~g} \mathrm{CuSO}_{4}$
$\mathrm{Fe}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{FeSO}_{3}(\mathrm{aq})$

100 mL

How much copper is in here that can react and exchange places with iron?

If 100 mL of $1 \mathrm{M} \mathrm{CuSO}_{4}$ reacts with 2.5 grams of Iron. How

 much copper can be produced?How much copper is in here that can react and exchange places with iron?
40% of 16 g CuSO 4 So, 6.4 g of $\mathbf{C u}$
$160 \mathrm{~g} \mathrm{CuSO}_{4}$

$1 \mathrm{M} \mathrm{CuSO}_{4}$

100 mL
160 g

Copper $=40 \%$	S= 20\%	Oxygen $=40 \%$

64g
32g
64g

If 100 mL of $1 \mathrm{M} \mathrm{CuSO}_{4}$ reacts with 2.5 grams of Iron. How

 much copper can be produced?
Equation \#1
 $\mathrm{Fe}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{FeSO}_{3}(\mathrm{aq})$

2.5 g Fe	1 mol Fe	1 mol Cu	64 g Cu	
	56 g Fe	1 mol Fe	1 mol Cu	

2.86 grams of Cu can be made from 2.5 grams of Iron

If 100 mL of $1 \mathrm{M} \mathrm{CuSO}_{4}$ reacts with 2.5 grams of Iron. How much copper can be produced?

Equation \#2

$2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{~s})+3 \mathrm{Cu}(\mathrm{s})$ 6.4 g Cu

2.5 g Fe	1 mol Fe	3 mol Cu	64 g Cu	
	56 g Fe	2 mol Fe	1 mol Cu	

4.29 g of Cu could be produced with this equation.

You calculate:

Find your copper from your given iron amounts for BOTH equations:
Equation \#1: 1Fe:1Cu ratio - $\mathrm{Fe}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{~s})+\mathrm{Cu}(\mathrm{s})$

2.5 g Fe	1 mol Fe	1 mol Cu	64 g Cu	2.86 grams of Cu can be made from 2.5
	56 g Fe	1 mol Fe	1 mol Cu	grams of Iron

Equation \#2: $2 \mathrm{Fe}: 3 \mathrm{Cu}$ ratio $-2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{~s})+3 \mathrm{Cu}(\mathrm{s})$

2.5 g Fe	1 mol Fe	3 mol Cu	64 g Cu	4.29 g of Cu could be produced with this equation.
	56 g Fe	2 mol Fe	1 mol Cu	

Observations:

Record Observation for Fe 1g-11 g. Record color patterns, amounts, magnetisms etc.

Reaction of Fe with $\mathrm{CuSO} 4 . .$.

Observations: Details matter!

Initial Iron (g)	Aqueous Solution (color, concentrations, particles)	Solids (color, texture, amounts)	Other: Magnetisms, jar, paper, etc.
1			
2			
3			
4			
5			
6			
7			
8			

Initial Iron (g)	Aqueous Solution (color, concentrations, particles)	Solids (color, texture, amounts)	Other: Magnetisms, jar, paper, etc.
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			

Initial Iron (g)	Aqueous Solution (color, concentrations, particles)	Solids (color, texture, amounts)	Other: Magnetisms, jar, paper, etc.
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			

Fill in your calculation for Equation 1 and 2 here.

If Iron is $\mathbf{+ 2}$

If Iron is +3

Fe (g)		$\mathrm{Cu}(\mathrm{g})$
0.0	Cu Expected (g)	
1.0	0.0	0.0
2.0	1.7	1.7
3.0	3.4	3.4
4.0	5.1	5.1
5.0	6.9	6.4
6.0	8.6	6.4
7.0	10.3	6.4
8.0	12.0	6.4
9.0	13.7	6.4
10.0	15.4	$\mathbf{6 . 4}$
11.0	17.1	$\mathbf{6 . 4}$
	18.9	$\mathbf{6 . 4}$

The Highlighted Areas show the predicted color of the aqueous solution for each reaction.

You calculate:

Find your Iron amount on the counter and weigh the filter paper(s). Subtract the mass of the filter paper(s) and record the amount you have of copper or copper/iron solid mixture.

	$\mathrm{Fe}(\mathrm{g})$	$\mathrm{Cu}(\mathrm{g})$ with excess CuSO4	Cu Expected (g)	Fe expected leftover	Total Expeded Mass (g)	Actual Mass on Filter (g)	$\mathrm{Fe}(\mathrm{g})$ expected in FeSO 4
No one	0						
Tekowa	1						
Evan	2						
Kadin/Trenton	3						
Sarah/Julie	4						
Allyn	5						
Megan/Toby	6						
Collin	7						

Data from our class:

https://docs.google.com/spreadsheets/d/1GVQNHcEzWoU91|4FM7uFWdqBWJv
Graded: 15 points x1tUuLM5XEU7pJ6k/edit?usp=sharing

$\mathrm{Fe}(\mathrm{g})$	$\begin{aligned} & \mathrm{Cu}(\mathrm{~g}) \text { with } \\ & \text { excess CuSO4 } \end{aligned}$	Cu Expected (g)	Fe expected leftover	Total Expected Mass (g)	Actual Mass on Filter (g)	$\mathrm{Fe}(\mathrm{g})$ expected in FeSO4
0						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						

Fe (g)	Cu (g) with excess CuSO4		Cu Expected (g)	Fe expected leftover	Total Expected Mass (g)	Actual Mass on Filter (g)
0				Fe (g) expected in FeSO4		
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
1						

This figure illustrates a redox reaction that shows what occurs when a shiny iron nail is dipped into a solution of copper(II) sulfate.

$\mathrm{Cu}^{2+} \mathrm{SO}_{4}+\mathrm{Fe} \rightarrow \mathrm{Fe}^{2+} \mathrm{SO}_{4}+\mathrm{Cu}$

- The iron reduces Cu^{2+} ions in solution and is simultaneously oxidized to Fe^{2+}.
-The iron becomes coated with metallic copper.

Single displacement reaction

$$
\mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}+\mathrm{FeSO}_{4}
$$

$\mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}+\mathrm{FeSO}_{4}$

 Iron is oxidized and Copper is reduceda. $\mathrm{Fe}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{FeSO}_{3}(\mathrm{aq})$
$\mathrm{Fe}(\mathrm{s})+\mathrm{Cu}^{+2}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Fe}^{+2}(\mathrm{aq})$

$$
\begin{aligned}
& \text { b. } 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{~s})+3 \mathrm{Cu}(\mathrm{~s}) \\
& 2 \mathrm{Fe}(\mathrm{~s})+\mathrm{Cu}^{+2}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{+3}(\mathrm{aq})+3 \mathrm{Cu}(\mathrm{~s})
\end{aligned}
$$

Electron Transfer and Redox Reactions

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

"Oxidation-Reduction Reactions"

LEO SAYS GER

Lose electrons its oxidation

Gain electrons its reduction
\mathbf{O}-oxidation

L- Loss of electrons
-

Loss of electrons
Reduction Is
Gain of electrons

Redox Reaction

Reduction

Gain of electrons
Decrease in oxidation number

teachoo REACTION OF COPPER SULPHATE WITH IRON

Reduction

THEORY DIAGRAM
The point is that the negative electrode (cathode) can be

for ELECTROPLATING

Illustrated with copper and copper sulfate solution

METAL
Deposit
of copper
metal
on object
surface to the negative electrode, gain electrons, so are reduced REDUCTION METAL IONS of
negative
cathode

ANY
CONDUCTING OBJECT metal to be deposited

THE NEGATIVE METAL ELECTRODE DISSOLVES
e.g. Cu Zn Cr Ag etc. PLATING copper anode dissolving METAL
eaten away by oxidation!

The ELECTROLYTE

An appropriate SALT
electrolyte of dilute copper sulfate solution
negative ions are attracted to the positive electrode, BUT they do not change, instead copper atoms lose electrons, oxidised to copper $2+$ ions still OXIDATION

SOLUTION of the metal e.g. copper sulfate, silver nitrate, zinc sulfate etc.
copper, silver chromium, zinc metal atoms etc. are all oxidised dissolved to form positive ions that move to the negative electrode to provide the 'coating'

Don't PANIC - Positive is Anode, Negative Is Cathode.

Electroplating

- Electroplating is the process of coating an object (usually made of metal) with a thin layer of a different metal by electrolysis.
- This is a useful way of protecting a metal from corrosion e.g. by plating steel (which easily rusts with a layer of nickel, chromium or gold).
- The process is also used to make a metal object more attractive.

Which diagram shows the appropriate apparatus to electroplate the iron crown with copper? anode cathode

Copper become pure copper (no longer a +2 ion) and therefore gained 2 electrons.

Anode: $\mathrm{Cu}_{(\mathrm{s})} \longrightarrow \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-}$ Cathode: $\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}_{(\mathrm{s})}$

Copper Plating

U.S. Circulating Coins Composition History

Electroplating

Electroplating

